Реферат: Взвешенная плавка никелевого концентрата в Печи взвешенной плавки(ПВП)

Министерство образования Российской Федерации

Норильский индустриальный институт

Кафедра металлургии

Курсовая работа

по дисциплине: «Металлургия»

на тему:

«ВЗВЕШАННАЯ ПЛАВКА НИКЕЛЕВОГО КОНЦЕНТРАТА В ПЕЧИ ВЗВЕШАННОЙ ПЛАВКИ»

Выполнил: Бельтюков С.Н.

Проверил: Рогова Л.И.

Группа: Экм-99-У ВО Подпись: _______________

Шифр: 060800 Дата проверки:

Дата выполнения

Норильск, 2000г.

СОДЕРЖАНИЕ

1. Выбор технологии производства…………………………2

2. Описание основного агрегата……………………………..3

3. Физико-химические основы процесса……………………5

4. Технико-экономические показатели……………………..11

5. Металлургический расчет…………………………………12

Библиографический список

1. ВЫБОР ТЕХНОЛОГИИ ПРОИЗВОДСТВА

Плавка во взвешенном состоянии на подогретом дутье была осуществлена в промышленном масштабе финской фирмы «Оутокумпу» на заводе «Харьявалта». В первона­чальном варианте для плавки применяли воздушное дутье, подо­гретое до 400—500 °С. Начиная с конца 60-х годов, этот процесс по лицензии фирмы «Оутокумпу» стали широко применять на метал­лургических заводах многих стран. В настоящее время он внедрен более чем на 30 предприятиях для переработки медных, никелевых и пиритных концентратов, в т.ч. на Надеждинском металлургическом заводе. Финскую плавку на сегодня можно счи­тать самым распространенным в промышленности и наиболее тех­нологически и аппаратурно отработанным автогенным процессом плавки сульфидных концентратов.

Особенностями взвешенной плавки являются:

— высокая производительность ( удельный проплав 10-15 т/м2 в сутки);

— низкий расход топлива — процесс плавки сульфидного концентрата протекает в режиме, близком к автогенному;

— возможность полного автоматического управления про­цессом плавки с помощью системы «Проскон-103'';

— возможность получения штейна требуемого состава;

— утилизация серы из высококонцентрированных серных газов.

Конструкция ПВП и комплекс других технических решений обеспечивают получение пара энергетических параметров и высо­кую степень утилизации серы из отходящих газов, что резко снижает выброс двуокиси серы в окружающую среду и значительно улучшают условия труда обслуживающего персонала.

В плавильном цехе НМЗ имеет­ся две печи взвешенной плавки одинаковой конструкции для плавки медного и никелевых концентратов.

Передел взвешенной плавки — структурное подразделение плавильного цеха HMЗ.

2. ОПИСАНИЕ ОСНОВНОГО АГРЕГАТА

Конструкция печи для плавки во взвешенном состоянии на подо­гретом дутье достаточно сложна — она сочетает в себе две верти­кальные шахты (реакционную и газоход-аптейк) и горизонтальную камеру-отстойник.

Тонкоизмельченная шихта, предварительно высушенная до со­держания влаги менее 0,2%, подается по системе ленточных конвейеров и пневмотранспорта в бункер шихты. Из бункера шихта двумя скребковыми транспортерами „Редлер“ подается через свод реакционной камеры с помощью четырех специальных горелок. Основное на­значение горелки — приготовление и подготовка шихтововоздушной смеси для ускорения процесса горения сульфидов. Перемешивание шихты с дутьем достигается разбиванием струи шихты о конус-рассекатель и подачей дутья через воздушный патрубок и распре­делительную решетку.

Схема горелки печи завода

1 — дутье; 2 — шихтовая воронка; 3 — загрузочный патрубок;

4 — воздушный патрубок; 5 — конус-рассекатель;

6 — распределительная решетка; 7 — диф­фузор

Вся печь взвешенной плавки выполнена в виде кладки из магнези­тового кирпича. Футеровка реакционной шахты и аптейка заключе­на в металлические кожухи из листовой стали. В кладку всех элементов печи заложено большое количество водоохлаждаемых

Печь для плавки во взвешенном состоянии

1 — горелка; 2 — реакционная камера; 3 — отстойная ванна; 4 — аптейк;

5 — ко­тел-утилизатор; 6 — паровой воздухоподогреватель;

7 — топливный воздухо­подогреватель

элементов, что позволяет значительно удлинить срок службы агрегата. Аптейк непосредственно сочленен с котлом-утилизатором туннельного типа. В боковой стене отстойной камеры установлены две медные водоохлаждаемые плиты с отверстиями для выпуска шлака, а в передней торцевой стене — чугунные шпуры для выпу­ска штейна.

Габариты печи определены на основании технологических расчетов произведенных с помощью ЭВМ, исходя из проектной производительности печи и других исходных параметров для про­ектирования.

В реакционной шахте, для окисления компонентов концентрата, используется воздух обогащенный кисло­родом и подогретый до 200°С. Согласно теплового баланса- степень обогащения дутья кислородом на ПВП никеля составляет 26%при среднем составе шихты, что позволяет реакционной шахте работать автогенно, без применения дополнительного топлива Оборудование рассчитано на максимальное обогащение кислородом до 40%, если по каким-либо причинам:

1. Теплопотребление шихты увеличится

2. Увеличатся тепловые потери печи;

3. Подогрев воздуха уменьшится.

Если обогащения дутья кислородом до 40% из-за вышеперечисленных факторов окажется недостаточным, то для восполнения недостатка тепла в реакционной шахте, используют природный газ.

Расплавленные частицы падают на поверхность ванны отстой­ника. В отстойной зоне печи происходит расслоение сульфидно-силикатного расплава на шлак и штейн. Для поддержания заданной температуры шлака и штейна в отстойной зоне смонтировано 18 го­релок природного газа. При выходе из реакционной шахты направление движения газов изменяется на 90° — газовый поток проходит горизонтально над ванной в отстойной зоне печи. Затем направ­ление движения газа вновь изменяется на 90° — газ поднимается по вертикальному аптейку печи вверх. В аптейк инжектируется угольная пыль, где и происходит восстановление сернистого газа до элементарной серы. Благодаря такой конструкции печи происходит достаточно полное отделение сульфидно-силикатных частиц, нахо­дящихся во взвешенном состоянии, от газового потока.

Пылевынос из печи взвешенной плавки составляет 12-15% от веса загружаемой шихты.

После аптейка газы поступают в котел-утилизатор, где охлаждаются с 1350°С до 550°С, а затем после очистки в электро­фильтрах от пыли, поступают в серный цех для улавливания из газов элементарной серы.

Печь взвешенной плавки является головным агрегатом в цепи переработки серосульфидных концентратов. Агрегат обладает вы­сокой интенсивностью плавления. В связи с этим печь имеет сложную и многообразную систему охлаждения.

Агрегат должен обладать высокой герметичностью. Нарушение герметичности ведет к подсосам, что нарушает тепловой баланс печи, разубоживает отходящие газы и увеличивает их объемы, уве­личивает расход восстановителя. Вышеперечисленные причины от­рицательно сказываются не дальнейшей обработке газов в серном цехе,

Все три части печи взвешенной плавки должны иметь высокую гер­метичность, требуют жесткого поддержания заданных параметров, что обеспечивается работой печи в автоматическом режиме с по­мощью ЭВМ.

3. ФИЗИКО-ХИМИЧЕСКИЕ ОСНОВЫ ПРОЦЕССА

Процесс плавки сульфидных концентратов с утилизацией серы из отходящих газов очень сложен, поэтому на производительность печи, полноту протекания окислительных и восстановительных реакций влияют многие факторы, основными из них являются;

— размеры частиц и время нахождения частиц в газовом потоке;

— время нагрева частиц;

— скорость, направление и последовательность окисли­тельных реакций, влияние температуры на конечное химическое равновесие;

— минералогический состав концентратов;

— вид восстановителя сернистого ангидрида и влияние температуры на конечное равновесное состояние восстановительных реакций.

Размеры частиц и величина удельной поверхности компонентов шихтовых материалов

Обычно руды измельчают перед флотацией в пределах нижнего класса крупностью от 60% класса — 0,0605 мм до 90% класса -0,088мм. Средней величиной зерна флотационных концентратов можно считать от 0,07мм до 0,03мм.

Процессы нагревания сульфидных частиц, диссоциации высших сульфидов и взаимодействия сульфидов с кислородом печной атмосферы в ходе взвешенной плавки являются типичными гетерогенными процессами, скорость которых при прочих, равных условиях линейно зависит от величины поверхности раздела на границе твердое — газ.

Произведя несложный расчет, можно убедиться что 1 кг материала с удельным весом 4 г/см3 при среднем диаметре зерна 0,04мм, что соответствует размеру зерен флотационных концентра­тов., имеет удельную поверхность 59,5 м2/кг, Будучи взятым в виде компактного шара, тот же I кг материала имеет поверхность всего 0,019 м2. Таким образом, измельчение материала влечет за собой резкое увеличение его удельной поверхности, Однако, излишнее переизмельчение шихтовых материалов нежелательно, так как в этом случае возрастает пылеунос,

Движение частиц в газовом потоке.

Очень важным параметром процесса плавки во взвешенном состоянии является время пребывания шихтовых частиц в потоке от момента поступления в пространство реакционной шахты до соударении с поверхностью расплава в отстойной зоне печи.

Поскольку и газы, и частицы шихты движутся в одной нап­равлении сверху вниз, очевидно, что время пребывания шихтовых частиц в полете определится суммой скоростей свободного паде­ния частицы и движения газового поток. В условиях плавки сульфидных флотационных концентратов скорость собственного падения самых крупных зерен концентрата не превышает I м/сек. Сульфидные частицы, вдуваемые в реакционную шахту, незначительно опережают газовый поток и время, необходимое для прохождения частиц концентрата по всей высоте плавильной шахты, равно 0,8 — 0.9 времени прохождения газом этого же пути, И если газ проходит шахту печи за 2,8 сек., то частицы флотационного кон­центрата будут находиться во взвешенном состоянии примерно 2,20 – 2,50 сек.

Нагрев пылевых частиц и теплопередача

В начальной стадии загрузки шихты в реакционную шахту, шихта подогревается за счет тепла, получаемого ею при конвективном теплообмене с подогретым до 200 С технологическим воздухом. Воспринимаемый частицей тепловой поток описывается уравнением .

Q=a x S x t(T1-T2)

a — коэф-т передачи тепла конвекцией, ккал/м2/час

S – воспринимающая тепловой поток поверхность, м2

t — время, час

Тепла этого явно недостаточно для воспламенения сульфид­ного материала, т.к. даже сера в зависимости от содержания кислорода в газовой фазе воспламеняется в интервале температур от 260 до 360 °C. Сульфидные же частицы в зависимости от размера зерен воспламеняются при температурах от 280 до 740 С.

Опускаясь ниже, распыленная шихта попадает в зону высо­ких температур, где она за счет излучения от факела или футеровки реакционной шахты нагревается до температур воспламенения сульфидов.

Количество передаваемого тепла за счет радиационного нагрева описывается уравнением Стефана-Больцмана:

Q= S x K x t x (T1/100)4 -(T2/100)4

Тепло, полученное поверхностью частицы, передается к ее центру, Передаче тепла в глубь частицы, даже если она и очень мала, осуществляется за счет теплопроводности и для случая шаровидной частицы подчиняется уравнению:

qx = Q/(4Пх2 х t)= l(Тп-Тх)/r2 (1/x-1/r)

Из уравнения следует, что удельный тепловой поток к центру частицы обратно пропорционален квадрату радиуса ее. Это означает, что при малых размерах частиц, которые имеют зерна флотационных концентратов, нагрев материала будет проходить в доли секунды.

Реакции окисления сульфидов протекают со значительным выделением тепла. Так как для окисления сульфида необходим подвод кислорода в зону реакции, тo становится понятным, что эти процессы могут протекать только на поверхности зерен. Из этого следует, что на некотором отрезке времени, начиная с мо­мента воспламенения, от поверхности сульфидной частицы возникает дополнительный тепловой поток в глубь сульфидного зерна.

При воспламенении сульфидной частицы температура ее поверхности скачкообразно возрастает достигая в малые доли се­кунды 1500-1700°С. Процесс окисления сульфидов приобретает наивысшую скорость, так как в этот момент поверхность зерен максимальна, содержание кислорода в газах еще высокое и окисная пленка на поверхности сульфидного зерна только что зарож­дается. Средняя температура факела в этой зоне резко повышается до 1400°С и более за счет тепла, выделяющегося при интенсивном окислении всей массы сульфидных зерен. В зоне максимальных температур выделяется основная часть тепла экзотермических реакций плавки, т.к. именно здесь протекают с максимальными скоростями большинство реакций.

В последней зоне, называемой зоной усреднения температур, скорости всех окислительных процессов быстро падают, так как, во-первых, падает содержание кислорода в газовом потоке и, во-вторых, на поверхности окисляющихся сульфидных зерен нарастает пленка продуктов реакции, тормозящая диффузию кислорода в глубь зерна. Если на поверхности частицы образуется плотная корка твердого окисла, лишенная трещин и прочих дефектов, то диффузия кислорода через нее будет чрезвычайно затруднена и процесс окисления может прекратиться, не дойдя до конца. Рых­лые, трещиноватые пленки тормозят процесс в меньшей степени, так же, как и жидкие окисные пленки, скорость диффузии через которые примерно на три порядке выше, чем через твердую пленку. В целом процесс окисления в реакционной шахте печи лимитирует­ся диффузией кислорода через пленки продуктов реакции и обрат­ной диффузией -сернистого ангидрида в ядро газового потока.

В устье реакционной шахты окислительные реакции полностью заканчиваются. Об этом свидетельствуют результаты анализа газа на содержание свободного кислорода: парциальное давление кисло­рода на выходе из реакционной шахты снижается до 10 мм рт.ст.

Диссоциация сульфидов при плавке во взвешенном состоянии

В составе концентратов присутствуют высшие сульфиды, ко­торые диссоциируют при нагревании на низшие сульфиды и серу. Ниже приведены реакции диссоциации.

FeS2 ®FeS+S

Fe11 S12 ®11FeS+S

Fe7 S8 ®7FeS+S

3NiFeS2 ®3FeS+Ni3 S2 +1/2S2

2CuFeS2 ®Cu2 S+2FeS+S

2CuS®Cu2 S+S

3NiS®Ni3 S2 +S

2CuFe2 S3 ®Cu2 S+4FeS+S

2Cu5 FeS4 ®5Cu5 S+2FeS+S

В интервале температур от 550 С до 650 С первым диссоциирует пирит, давление диссоциации которого при 631°С до 0,1 атм. Наиболее устойчив борнит, диссоциирующий в температур 8400-850°С. Все реакции идут с поглощением тепла. Отщепляющаяся сера воспламеняется, в зависимости от содержания кислорода в дутье, в интервале температур 280 С-560 С.

Конечными продуктами диссоциации высших сульфидов во всех случаях являются низшие сульфиды которые в дальнейшем частично окисляются, образуя окислы соответствующих металлов переходящие в шлак.

1/2S2 +O2 =SO2 (без катализатора)

1/2S2 +3/2O2 =SO3 (с катализатором)

Ni3 S2 +7/2O2 =3NiO+2SO2 ­

Cu2 S+1,5O2 =Cu2 O+SO2 ­

FeS+1,5O2 =FeO+SO2 ­

3FeS+5O2 =Fe3 O4 +3SO2 ­

Неокислившиеся низшие сульфиды переходят в штейн. Окисление сульфидов сопровождается образованием больших количеств магнетита, особенно в поверхностных слоях частиц. Пере­окисление железа до магнетита зависит также от степени десуль­фуризации при плавке. С возрастанием степени десульфуризации и получением более богатых штейнов все большая часть железа переводится в форму магнетита.

К числу важнейших элементарных стадий, протекающих в от­стойной камере печи, относятся:

1) сульфидирование образовавшихся в факеле оксидов ценных металлов;

2) растворение тугоплавких составляющих (CaO, Si02, AI2О3, и MgO и др.) в первичных железистых шлаках и формирование шлака конечного состава;

3) восстановление магнетита сульфидами;

4) формирование штейна конечного состава и укрупнение мел­ких сульфидных частиц;

5) разделение штейна и шлака.

9NiO+7FeS=3Ni3 S2 +7FeO+SO2 ­

Cu2 O+FeS=Cu2 S+FeO

Образование фаялита

2FeO+SiO2 =(FeO)2 SiO2

Разложение магнетита

3Fe3 O4 +FeS+5SiO2 =5(FeO)2 xSiO2 +SO2 ­

Плавкость сульфидов

В сравнении с окислами сульфиды являются более легко­плавкими соединениями. Температуры плавления основных сульфидов, входящих в состав медных и никелевых штейнов:

Сульфид железа 1171 С

Халькозин – 1135 С

Сульфид кобальта – 1140 С

Хизлевудит – 788 С

Эвтектические сплавы, образованные двумя различными суль­фидами, а так же эвтектики между сульфидом и его металлом более легкоплавки, чем отдельные компоненты.

Штейны при плавке сульфидных компонентов всегда является многокомпонентными системами. Составы штейнов не всегда от­вечают составам эвтектик, но тем не менее, температуры плавле­ния штейнов все же ниже, чем температуры плавления входящих в них сульфидов. Обычно при температуре 850-900°С штейны на­ходятся в жидкотекучем состоянии,

Термодинамика окислительных реакций при плавке во взвешенном состоянии

В общем виде основную реакцию, протекающую в реакционной шахте печи, можно представить следующим уравнением:

MeS+1,5О2= MeO+SO2 +Q

Эта реакция экзотермическая и ее тепловой эффект вомно­гих случаях, при условии нагрева материала до температуры воспламенения, обеспечивает самопроизвольный ход процесс без затрат тепла извне.

Об интенсивности протекания той или иной реакции принято судить по величине измерения изобарно-изотермического потен­циала системы, которая выражает энергетические превращения в ходе химического процесса. При всех самопроизвольных процессах величина DZ имеет отрицательный знак, что говорит о высвобождении энергии и отдаче ее системой на сторону, В этом случае мы наблюдаем выделение тепла в ходе реакции. Чем боль­ше числовое значение DZ при отрицательном знаке, тем энер­гичнее и глубже протекает реакция. Таким образом, сравнивая между собой величиныDZ отдельных реакций, можно опреде­лить преимущественность протекания одной реакции по сравнению о другой. При положительном значении реакция не может проте­кать самопроизвольно, так как для ее совершения необходимы энергетические поступления извне,

Величина изменения изобарно-изотермического потенциала

DZ позволяет определить величину константы равновесия реакции, которая характеризует конечное состояние системы, когда в ней завершился самопроизвольный процесс и установилось равновесие между исходными и конечными составляющими реак­ции. Этасвязь выражается уравнением:

Lq K кр=- D Z / RT

По величине константы равновесия можно судить о направле­нии и глубине протекания процесса.

Восстановление технологических газов угольной пылью.

Технологические газы плавки во взвешенном состоянии до восстановления имеют следующий состав:

SO2 – 12,6; H2 O- 8,5; СО2 — 5,5, O2 — 0,7; N2 — 72%; t= 1450°

Процесс восстановления сернистых газов осуществляется в аптейке печи взвешенной плавки. В качестве восстановительного реагента используют измельченный уголь с минимальным содержани­ем летучих компонентов и золы. Так как летучие компоненты представлены углеводами, тоих участие в процессе восстановле­ния технологических газов, ведущих к образованию повышенных количеств H2 S, CS2 и COS, нежелательны. Повышенное содержание золы в угле приводит к увеличению количества пыли и шлака, а, следовательно, снижает извлечение цветных металлов и увеличи­вает энергозатраты. К томуже зола угля является основной причиной образования настылей в аптейке.

По расчетным данным пылевынос печи взвешенной плавки составляет 12-15% от количества загружаемой шихты, где на до­лю золы приходится значительная часть. Так как вся пыль улав­ливается и возвращается в процесс, то увеличение зольности угля ведет к пропорциональному увеличению оборотной пыли.

Зола различных углей обладает различной температурой плавления. При температуре 1350°С зола находится в полурасплавленном состоянии, и при выходе из аптейка на границе радиационной части котла-утилизатора при соударении со стенками, будет налипать на поверхность футеровки (горловины) и образо­вывать настыли. При удалении настылей тем или иным способом, будь то обдув паром высокого давления или воздухом, также не исключена возможность применения буровзрывных работ, а это связано о открыванием смотровых люков, отверстий, что в свою очередь может привести к расстройству процесса и вынужденным остановкам печи.

Углерод и летучие компоненты угольной пыли взаимодейству­ют с сернистым ангидридом, восстанавливая его до элементарной серы.

Восстановление протекает в общей форме по уравнениям:

SO2 +C=1/2S2 + CO2

SO2 +2Н2 =1/2S2 +2H2 O

При этом имеют место побочные реакции, что значительно снижает извлечение серы.

При взаимодействии сернистого ангидрида с пылеуглем в интервале температур 1300-700°С доля образующихся компонентов H2 S, CO, COS довольно высокая. Степень восстановления сернистого ангидрида в элементарную серу обычно не превышает 20-25%, т.к. основная масса угля расходуется на образование побочных продуктов.

Когда в газовой фазе присутствуют водородные соединения, в том числе и вода., количество нежелательных реакций увеличи­вается, что приводит к снижению содержания элементарной серы в газовой фазе.

В результате восстановления получается многокомпонентный газ, и, с практической точки зрения, особую важность в этом составе представляет сернистый ангидрид и элементарная сера. Восстановленный газ из аптейка ПВП с температурой 1330°С поступает в котел-утилизатор. В котле-утилизаторе газ охлаждается до температуры 350°С. При этой температуре СО и COS почти отсутствуют, а содержание элементарной серы почти достигает максимума.

При охлаждении газа в котле-утилизаторе протекают основ­ные реакции:

CO+1/2 S2 = COS

COS+H2 O=CO2+H2 S

H2+1/2S2 =H2 S

Из представленных реакций первая реакция протекает быстро, а следующая реакция очень медленно и для полного протекания реак­ции необходим катализ.

При температуре 1330°С в аптейке ПВП наступает термоди­намическое равновесие между компонентами упомянутыми выше.

Кроме восстановления газа в аптейке ПВП происходит восстановление окислов пыли.

В общем виде реакцию восстановления компонентов пыли можно представить уравнением:

4МеО + 3S2 ®4МеS + 2 SO2

Этот процесс идет с поглощением тепла, что снижает темпе­ратуру отходящих газов,

Восстановленная оборотная пыль содержит в себе следующие соединения: NiS, CuS, FeS, CoS, ZnS, PbS, As2 S2, Cu2 Se, SiO2, Аl2 O3, CaO, MqO, прочие и свободный углерод.

При сравнении компонентов окисленной и восстановленной пылей видно, что в процессе восстановления происходит погло­щение серы и выделение свободного кислорода для связывания которого требуется дополнительная затрата углерода. Следова­тельно, можно сделать вывод, что снижение пылевыноса в процес­се плавки выгодно как с экономической точки зрения по расходу угля, так и с точки зрения снижения безвозвратных потерь цвет­ных металлов.

4. ТЕХНИКО-ЭКОНОМИЧЕСКИЕ ПОКАЗАТЕЛИ ПРОЦЕССА

Показатель Значение
Производительность печи, т/сут 445,44
Удельный проплав, т/(м2 х сут) 10-15
Содержание О2 в дутье, % 26
Температура дутья, С 25-40
Содержание Ni, %:
В штейне 34,9
В шлаке 1,4
Пылеунос, % 10-15

5. Металлургический расчёт.

Исходные данные для расчёта: содержание Ni в концентрате – 8 %;

cодержание Сu в концентрате – 4 %;

Расчёт производим на 100 кг концентрата.

Химический состав концентрата:

Cu – 4 %; Ni – 8 %; Fe – 46 %; S – 30 %; SiO2 – 3,5 %; CaO – 2,3 %; MgO – 2 %; Al2O3 – 1,38 %; прочие – 2,82 %.

По минералогическому составу ориентировочно 60% меди находится в кубаните, 40% в халькопирите, никель находится в пентландите

Состав концентрата.

Таблица №1

Комп. Cu Ni Fe S Оксиды Прочие Общ. мас.
Si Ca Mg Al
NiFeS2 8,00 7,60 8,72 24,33
CuFeS2 1,60 1,40 1,61 4,61
CuFe2 S3 2,40 4,21 3,62 10,23
Fe11 S12 32,78 16,04 48,83
SiO2 3,50 3,50
CaO 2,30 2,30
MgO 2,00 2,00
Al2O3 1,38 1,38
Прочие 2,82 2,82
% 4,00 8,00 46,00 30,00 3,50 2,30 2,00 1,38 2,82 100,00

NiFeS 2

58,7 Ni – 178,5NiFeS2 X= 24,33 (кг)

8 Ni – X NiFeS2

55,8 Fe — 178,5NiFeS2 X = 7.6 (кг Fe)

X Fe – 24,33 NiFeS2

64 S — 178,5 NiFeS2 X=8,73 (кг S)

X S — 24.33 NiFeS2

Проверка: 8,73+7,6+8=24,33

CuFeS 2

63.6 Cu – 183.4 CuFeS2 X= 4.61 (кгСu)

1,6 Cu – X CuFeS2

55.8 Fe – 183.4 CuFeS2 X= 1.4 (кгFe)

X Fe – 4.61 CuFeS2

64 S – 183.4 CuFeS2 X= 1.61 (кг S)

X S — 4.61 CuFeS2

Проверка: 1,6+1,4+1,61=4,61

CuFe 2 S3

63,6 Cu – 271.2 CuFe2 S3 X= 10.23 (кг)

2.4 Cu – X CuFe2 S3

111.6 Fe – 271.2 CuFe2 S3 X= 4.21 (кг)

X Fe – 10.23 CuFe2 S3

96 S — 271.2 CuFe2 S3 X= 3.62 (кг)

X S – 10.23 CuFe2 S3

Проверка: 3,62+4,21+2,4=10,23

Fe11 S12

Fe= 46-7.6-1.4-4.21=32.78

S = 30-8.72-1.4-4.21=16.04

Fe11 S12 = 32.78+ 16.04= 48. 83 кг

Химический состав оборотной пыли ПВП:

Cu – 2,3%; Ni – 5,2 %; Fe – 26 %; S – 18,5 %; SiO2 – 24,5 %;

CaO – 2,6 %; MgO – 2,1 %; Al2O3 – 2,3%; прочие – 16,5 %.

Учитывая, что шихта состоит на 85% из концентрата и на 15% из оборотной пыли, то рассчитываем химический состав шихты:

m (Cu) = 4*0,85 + 2,3*0,15 = 3,75 (кг);

m (Ni) = 8*0,85 + 5,2*0,15 = 7,58 (кг);

m (Fe) = 46,0*0,85 + 26*0,15 = 43 (кг);

m (S) = 30*0,85 + 18,5*0,15 = 28,28 (кг);

m (SiO2) = 3,5*0,85 + 24,5*0,15 = 6,65 (кг);

m (CaO) = 2,3*0,85 + 2,6*0,15 = 2,35 (кг);

m (MgO) = 2*0,85 + 2,1*0,15 = 2,02 (кг);

m (Al2O3) = 1,38*0,85 + 2,3*0,15 = 1,52 (кг);

m (проч.) = 2,82*0,85 + 16,5*0,15 = 4,87 (кг);

Химический состав шихты.

Таблица №2

Комп. Cu Ni Fe S Оксиды Прочие Общ. мас.
Si Ca Mg Al
Конц-т 4 8 46 30 3,5 2,3 2 1,38 2,82 100
Обор. Пыль 2,3 5,2 26 18,5 24,5 2,6 2,1 2,3 16,5 100
Шихта 3,75 7,58 43,00 28,28 6,65 2,35 2,02 1,52 4,87 100

Предварительный расчёт по выходу штейна.

Извлечение в штейн из шихты :

Cu – 91%

Ni – 91 %

Всего в штейн перейдет :

Cu 3,75х0,91= 3,41

Ni 7,58х0,91= 6,9

Вес штейна на 100 кг концентрата при 50 % содержании металлов :

(3,41+6,9)х0,5= 20,61

По данным Б.П. Недведецкого, в штейнах с 50% металла содержится 2% О2 и 23,7% S

В этом случае содержание железа в штейне составит:

Fe: 100-(50+2+23,7)= 24,3%

Предварительный состав штейна.

Таблица № 3

Хим. Сост.

Масса кг. %
Ni 6,9 33,48
Cu 3,41 16,55
S 4,88 23,7
O2 0,41 2
Fe 5,01 24,3
Итого 20,61 100

Перейдет в шлак железа: 43-5,01=37,99 кг

Флюсы:

Для получения кондиционных отвальных шлаков и в связи с высоким содержанием Fe в исходном сырье в шихту вводятся флюсующие присадки. Основным флюсующим компонентом в шихте служит песчаник.

Примем следующий состав песчаника:

SiO2 – 80 %, MgO – 1,5%, Al2 O3 – 8,7%

CaO – 1,3 %, FeO – 2,5%,

Расчет ведем на получение шлака, содержащего 30% SiO2 .

Примем, что Х – общая масса шлака, кг; У – масса загружаемого песчаника, кг. Составляющие песчаника переходят в шлак целиком. Тогда общая масса шлака будет, кг:

Х=У+37,99х71,85/55,85+5,88+6,65= У+61,4

37,99х71,85/55,85 – количество FeO, образовавшаяся из железа концентрата, перешедшего в шлак.

6,65 – количество SiO2 в концентрате

5,88 – количество CaO,MgO, Al2O3

Второе уравнение получаем из баланса:

0,30 Х=6,65+0,8У

Решая систему уравнений получаем:

У=23,54 (песчаник) Х = 84,94 (шлак)

Результат проверяем подсчетом количества и состава шлака:

FeO 48,87+23,54х0,025=49,46 58,23
SiO2 6,65+23,54х0,8=25,48 30,00
Al2 O3 1,52+23,54*,087=3,57 4,19
CaO 2,35+23,54х0,013=2,66 3,12
MgO 2,02+23,54х0,015=2,37 2,79
Прочие 1,42 1,67
Итого 84,94 100

Для расчета состава и количества отходящих газов примем, что весь кислород, необходимый для осуществления реакций, поступает с подогретым дутьем. При этом необходимо учитывать, что на практике имеются неорганизованные подсосы холодного воздуха, количество которого может колебаться от 2% до 6%.

Влажность шихты 0,2%, следовательно в печь поступит ее

(100+23,54)х0,002=0,25 кг

С учетом содержания серы в штейне и шлаке ее перейдет в газы:

28,28 – 4,88- 0,67=22,73 кг

32S-64 SO2

22,73 S — XSO2, что составляет 45,46 кг SO2

На окисление железа, переходящего в шлак, расход кислорода составит 48,87-37,99=10,88кг

Общая потребность кислорода на плавку 100 кг концентрата будет, кг:

— На окисление серы – 22,73

— На окисление железа – 10,88

— Переходит в штейн – 0,41

Итого:34,02 кг

Вместе с кислородом в печь поступит азота

34,02/0,23 х 0,77=113,8 кг

Из практики работы известно, что со шлаком теряется: Cu – 2%, Ni – 4,5%

Cu= 3,75 x 0,02= 0,075

Ni= 7,58 x 0,045=0,34

S в шлак = 28,28- (4,88+22,73)=0,67

В технические газы отходит:

Cu: 3,75-(3,41+0,08)= 0,26

Ni: 7,58-(6,9+0,34)=0,34


Статьи баланса Всего В том числе
Cu Ni Fe S SiO2 CaO MgO Al2O3 O2 N2 H2 O прочие
Загружено:
Шихты 100,22 3,75 7,58 43,00 28,28 6,65 2,35 2,02 1,52 - - 0,20 4,87
Песчаника 21,59 18,83 0,31 0,35 2,05 - - 0,05
Воздуха 147,82 34,02 113,80
Всего: 269,63 3,75 7,58 43,00 28,28 25,48 2,66 2,37 3,57 34,02 113,80 0,25 4,87
Получено:
Штейна 20,61 3,41 6,90 5,01 4,88 - - - - 0,41 -
Шлаков 88,91 0,08 0,34 37,99 0,67 25,48 2,66 2,37 3,57 10,88 4,87
Технические газы 160,11 0,26 0,34 22,73 22,73 113,80 0,25
Всего: 269,63 3,75 7,58 43,00 28,28 25,48 2,66 2,37 3,57 34,02 113,80 0,25 4,87
Материальный баланс плавки концентрата в печи Взвешенной Плавки никелевой линии

Библиографический список.

1. И.А.Стригин и др. «Основы металлургии», т.1 Общие вопросы

Металлургии, Москва, Металлургия, 1975г.

2. И.А.Стригин и др. «Основы металлургии», т.2 Тяжелые металлы, Москва, Металлургия, 1975г.

3. И.А.Стригин и др. «Основы металлургии», т.7 Технологическое оборудование предприятий цветной металлургиии, Москва, Металлургия, 1975г.

4. Н.В.Гудима “Технологические расчёты в металлургии тяжёлых цветных металлов», Москва, Металлургия, 1977г.

5. Ф.М.Лоскутов, А.А.Цейдлер «Расчёты по металлургии тяжёлых цветных металлов», Москва, Металлургиздат, 1963г.

6. Технологическая инструкция №0401-3.1.109-34-80

7. А.В. Ванюков, Н.И. Уткин «Комплексная переработка медного и никелевого сырья», Челябинск, Металлургия,1988г.

еще рефераты
Еще работы по металлургии