Реферат: Проект структурированной кабельной системы

--PAGE_BREAK--Функциональные элементы
Обобщенная кабельная система включает в себя следующие функциональные элементы:

·         Главный Распределительный Пункт (ГРП)

·         Магистральный кабель территории

·         Распределительный Пункт Здания (РПЗ)

·         Магистральный кабель здания

·         Распределительный Пункт Этажа (РПЭ)

·         Горизонтальный кабель

·         Точка перехода (ТП)

·         Телекоммуникационный Разъем (ТР)

Группы этих элементов объединяются в кабельные подсистемы.
Кабельные подсистемы

Обобщенная кабельная подсистема состоит из трех кабельных подсистем:

·         Магистральная подсистема территории

·         Магистральная подсистема здания

·         Горизонтальная подсистема

Объединение трех кабельных подсистем формирует структуру обобщенной сети.

Магистральная кабельная система территории простирается от главного распределительного пункта до распределительных пунктов здания, обычно расположенных в разных зданиях. Система состоит из: магистральных кабелей территории, механического окончания кабелей (в главном распределительном пункте и в распределительных пунктах этажа), кроссовых соединений в главном распределительном пункте. Кабели системы могут соединять распределительные пункты здания между собой

Магистральная кабельная система здания простирается от распределительного пункта здания до распределительных пунктов этажа. Система состоит из: магистральных кабелей здания, механического окончания кабелей (в распределительном пункте здания и в распределительных пунктах этажа), кроссовых соединений в распределительном пункте здания. Кабели системы не могут иметь точек перехода, а медные кабели выполняются без сращивания.

Горизонтальная кабельная подсистема простирается от распределительного пункта этажа до телекоммуникационных разъемов на рабочих местах. Горизонтальная подсистема включает горизонтальные кабели, механическое окончание кабелей (разъемы) в РП этажа, коммутационные соединения в РП этажа и телекоммуникационные разъемы. В горизонтальных кабелях не допускается разрывов. При необходимости допускается одна точка перехода. Все пары и волокна телекоммуникационного разъема должны быть подключены. Телекоммуникационные разъемы не являются точками администрирования. Не допускается включения активных элементов и адаптеров в состав СКС. Обобщенная кабельная система показана на рисунке.

<img width=«500» height=«229» src=«ref-1_1932090893-16291.coolpic» alt=«pic1_5.gif (16552 bytes)» v:shapes="_x0000_i1025">

Кабельная система рабочего места соединяет телекоммуникационный разъем рабочего места с терминальным оборудованием. Кабели этой системы не входят в круг требований стандарта, хотя стандарт специфицирует их предельную длину и рабочие характеристики [8].



1
.7 Общая структура СКС


Обобщенная кабельная система имеет структуру иерархической звезды, которая может принимать форму, изображенную нарисунке ниже.

<img width=«336» height=«237» src=«ref-1_1932107184-9459.coolpic» alt=«pic1_6.gif (18209 bytes)» v:shapes="_x0000_i1026">

Количество и тип подсистем, включенных в систему, зависит от географии и размеров территории предприятия, а также от стратегии пользователя. Например для территории, включающей только одно здание, центральной точкой является распределительный пункт здания, и отпадает необходимость в магистральной подсистеме территории. С другой стороны, большое здание может рассматриваться как территория с главным распределительным пунктом и распределительными пунктами зданий.

Для некоторых прикладных систем дополнительные соединения между распределительными пунктами здания и этажа допустимы и желательны. Кабели магистральной подсистемы здания могут обеспечивать такие соединения. Однако эти соединения будут избыточными по отношению к рекомендованной базовой структуре.

Функции распределительных пунктов разного типа могут быть объединены в одном. На рисунке изображен пример.

<img width=«264» height=«262» src=«ref-1_1932116643-10186.coolpic» alt=«pic2_6.gif (19149 bytes)» v:shapes="_x0000_i1027">

В здании на переднем плане каждый тип распределительного пункта изображен отдельно. В здании на заднем плане показан распределительный пункт, соединяющий в себе функции пункта здания и пункта этажа [8].
Размещение распределительных пунктов


Распределительные пункты размещаются в шкафах оборудования или помещениях оборудования. На рисунке ниже показано типичное размещение функциональных элементов. Для прокладки кабелей используются подходящие элементы конструкции здания, такие как воздуховоды, тоннели, кабельные лотки, и т. д.

<img width=«324» height=«288» src=«ref-1_1932126829-13443.coolpic» alt=«pic3_6.gif (21125 bytes)» v:shapes="_x0000_i1028">

 

1.8 Интерфейсные места кабельной системы

Интерфейсные места обобщенной кабельной системы размещаются на концах каждой подсистемы. В этих точках возможно подключение оборудования прикладных систем. На рисунке изображены потенциальные места распределительных пунктов для подключения оборудования.

<img width=«400» height=«150» src=«ref-1_1932140272-12551.coolpic» alt=«pic4_6.gif (12779 bytes)» v:shapes="_x0000_i1029">

К распределительному пункту может быть подключен кабель связи с внешними службами, для подключения оборудования может использоваться как соединение через кросс, так и непосредственное соединение.

Расстояние от внешних служб до главного распределительного пункта имеет решающее значение. Характеристики кабеля между двумя точками должны быть тщательно продуманы и реализованы со стороны пользовательских приложений.
1.9 Интерфейс глобальных сетей

Интерфейс глобальных сетей представляет собой точку подключения к глобальным телекоммуникационным службам. Размещение этой точки, а также требования к необходимому оборудованию могут быть предметом обсуждения национальных, региональных и локальных нормативных документов. Если интерфейс глобальной сети не подключен непосредственно к интерфейсу обобщенной сети, характеристики промежуточного кабеля должны быть приняты во внимание. Тип кроссового соединения и промежуточного кабеля может регулироваться национальными правилами. Эти правила должны быть учтены при проектировании сети.

                                           

1.10 Количества и конфигурация оборудования.

На каждые 1000 квадратных метров обслуживаемого пространства должен быть как минимум один распределительный пункт. Как минимум один распределительный пункт должен быть организован на каждом этаже. Если этаж имеет мало рабочих мест (например, вестибюль), он может обслуживаться распределительным пунктом смежного этажа.

В таблице ниже приведены общие рекомендации по выбору типа носителя сигнала при проектировании кабельной системы.


Подсистема

Тип носителя сигнала

Рекомендуемое использование

Горизонтальные кабели

Сбалансированные кабели

Голос, данные (1)

Оптоволокно

Данные (1)

Магистральные кабели

Сбалансированные кабели

Голос и низкоскоростная среда для передачи данных

Оптоволокно

Высокоскоростная среда для передачи данных

Магистральные кабели территории

Оптоволокно

Для большинства приложений. Использование оптоволокна решает многие проблемы, связанные с источниками помех.

Сбалансированные кабели

При необходимости (2)

(1) При определенных условиях (соображения безопасности, условия среды и т.д.) может рассматриваться использование оптоволокна для горизонтальных кабелей

(2) Сбалансированные кабели можно использовать магистральной подсистеме территории, если широкая полоса пропускания, свойственная оптическим кабелям, не требуется.



Телекоммуникационные разъемы располагаются на стене, на полу или в любой другой области рабочего места. Все зависит от конструкции здания. При проектировании кабельной системы телекоммуникационные разъемы должны размещаться в легкодоступных местах. Высокая плотность размещения разъемов повышает гибкость системы по отношению к изменениям. Во многих странах разъемы устанавливаются из расчета: два разъема на максимум 10 квадратных метров рабочей площади.
Разъемы могут устанавливаться как отдельно, так и в группе, но каждое рабочее место должно быть снабжено минимум двумя разъемами.

Каждый телекоммуникационный разъем должен быть промаркирован постоянной, хорошо заметной для пользователя, этикеткой. Следует обратить внимание на маркировку каждой дуплексной пары: все изменения маркировки должны фиксироваться в документации.

Шкафы оборудования должны обеспечивать все необходимые условия (пространство, питание, условия окружающей среды и т.д.) для пассивных элементов и активного оборудования, установленного в них. Каждый шкаф должен иметь прямой выход на магистральные кабели.

Помещение оборудования представляет собой часть внутреннего пространства здания, где располагается телекоммуникационное оборудование. В помещении может располагаться, а может и не располагаться распределительный пункт. Помещения оборудования отличаются от шкафов, прежде всего типами и сложностью вмещаемого оборудования. В помещении может располагаться более одного распределительного пункта. Пространство, в котором размещено телекоммуникационное оборудование более чем одного распределительного пункта, должно рассматриваться как помещение оборудования.

Кабельный ввод оборудуется для ввода в здание магистральных кабелей, кабелей глобальных и локальных сетей и перехода на кабель для внутренней прокладки. Ввод включает в себя входную точку в стене здания и трассу, ведущую к главному распределительному пункту или пункту этажа. Организация окончания внешнего кабеля может потребовать установки специального оборудования согласно требованиям местных технических норм [8].

1.11 Реализация кабельной системы

Длины смонтированных кабелей магистральной и горизонтальной подсистем не должны превышать предельных значений. Эти значения приведены на рисунке.

<img width=«444» height=«345» src=«ref-1_1932152823-19440.coolpic» hspace=«12» alt=«pic1_7.gif (23173 bytes)» v:shapes="_x0000_s1068">

 
Горизонтальная подсистема

Длина кабелей горизонтальной подсистемы не должны превышать 90 метров. Эта длина представляет собой расстояние, проходимое сигналом от механического окончания кабеля на кроссе распределительного пункта этажа до окончания на телекоммуникационном разъеме рабочего места.

Суммарная длина кабеля рабочего места, кабеля-перемычки и кабеля оборудования не должна превосходить 10 метров. Доля длины каждого кабеля выбирается исходя из конкретной необходимости, но длина кабеля-перемычки не должна превышать 5 метров.

На рисунке ниже представлена модель, используемая для корреляции характеристик кабелей горизонтальной сети с кабелями оборудования [8].

<img width=«300» height=«231» src=«ref-1_1932172263-9985.coolpic» alt=«pic2_7.gif (13877 bytes)» v:shapes="_x0000_i1030">
1
.12 Магистральная подсистема



Топология магистральных кабелей может иметь не более двух иерархических уровней. Соблюдение этого требования позволяет снизить ухудшение качества сигнала на пассивных элементах системы и упростить администрирование системы. Сигнал, вышедший из распределительного пункта этажа должен достигать главного распределительного пункта, проходя не более чем один кроссовый узел.

Допускается структура магистральной подсистемы, имеющая только один кроссовый пункт. Магистральные кроссовые пункты должны располагаться в шкафах оборудования или помещениях оборудования.

На рисунке представлены соотношения длин кабелей магистральной подсистемы. Расстояние между главным распределительным пунктом и распределительным пунктом этажа не должно превышать 2000 метров. Расстояние между распределительным пунктом здания и распределительным пунктом этажа не должно превышать 500 метров. При использовании одномодового кабеля максимальное расстояние в 2000 м может быть увеличено. Известно, что характеристики одномодового кабеля позволяют передавать сигнал на расстояние до 60 км. Однако дистанция между главным распределительным пунктом и распределительным пунктом этажа большая чем 3000 м считается выходящей за область применения стандарта.

<img width=«336» height=«141» src=«ref-1_1932182248-5308.coolpic» alt=«pic3_7.gif (6206 bytes)» v:shapes="_x0000_i1031">

Длины кабелей-перемычек, применяемых в главном распределительном пункте и распределительных пунктах здания не должны превышать 20 метров. Избыточная длина перемычек должна быть вычтена из максимальной длины магистрального кабеля [8].
1.13 Классификация прикладных систем и классификация кабельных систем.

Определено 5 классов прикладных систем:
класс A – системы для работы в речевом диапазоне и низкочастотной передачи. Медные кабели, поддерживающие этот класс приложений, входят в класс кабельных систем A. класс B – системы для среднечастотной передачи. Медные кабели, поддерживающие этот класс приложений, входят в класс кабельных систем В. класс С – системы для высокочастотной передачи. Медные кабели, поддерживающие этот класс приложений, входят в класс кабельных систем С. класс D – системы для сверхвысокочастотной передачи. Медные кабели, поддерживающие этот класс приложений, входят в класс кабельных систем D. класс оптики – системы для высокочастотной и сверхвысокочастотной передачи. Оптоволоконные кабели, поддерживающие этот класс приложений, входят в класс оптоволоконных кабельных систем. Широта полосы пропускания этих систем не является ограничивающим фактором.
Классификация кабельных систем строится на основе полосы пропускания базовой линии кабеля горизонтальной подсистемы. Определено 5 классов:
класс A – пропускает сигнал до 100 Кгц. класс B – пропускает сигнал до 1 МГц. класс С – пропускает сигнал до 16 МГц. класс D – пропускает сигнал до 100 МГц. Класс оптоволоконных систем – поддерживает приложения, требующие полосы 10 МГц и более.
Характеристики медных кабелей, входящих в классы A, B, C и D, специфицируются так, чтобы они удовлетворяли минимальным требованиям соответствующего класса приложений. Кабель конкретного класса всегда поддерживает приложения более низкого класса. Класс А считается наинизшим.

Параметры оптических кабелей специфицируются отдельно для одномодового и многомодового волокна. Классы C и D соответствуют полной реализации характеристик горизонтальной подсистемы, изготовленной из кабелей 3 и 5 категорий соответственно. Допустимые длины каналов для разных кабельных сред и классов кабельных систем приведены в таблице:

Среда распространения сигнала

Максимальная длина канала, м

A

B

C

D

Оптика

Сбалансированный кабель категории 3

2000

200

100 (1)

 

 

Сбалансированный кабель категории 5

3000

260

160 (2)

100 (1)

 

Сбалансированный кабель, 150 ом

3000

400

250 (2)

150 (2)

 

Многомодовое волокно

 

 

 

 

2000

Одномодовое волокно

 

 

 

 

3000 (3)
в 100 метров длины включается длина гибких кабелей для кроссовых перемычек, подсоединения оборудования, и кабелей рабочего места. когда требуются кабели горизонтальной системы длиной более 100 м, должны рассматриваться требования стандартов на прикладную систему 3000 м – это ограничение, связанное с областью действия стандарта, а не характеристиками кабеля.


2. Постановка задачи.
Основная цель дипломной работы – составить проект структурированной кабельной системы (СКС) для интеллектуального здания газопромыслового управления в поселке Пангоды. Данная СКС должна соответствовать принятым международным стандартам (ANSI/TIA/EIA-568-A и ISO/IEC11801), и обеспечить передачу всех видов информации (данные, голос, видео и т.д.) с учетом перспектив развития современных информационных технологий. Кроме того СКС должна обеспечить интеграцию и работоспособность всех элементов и систем интеллектуального здания.

В частности на базе СКС будет развернута компьютерная и телефонная сети, охранная и пожарная сигнализации, системы оповещения, видеонаблюдения, контроля доступа, бесперебойного питания. В рамках дипломной работы планируется рассмотреть реализацию некоторых из этих систем.
Материалы, положенные в основу разработки проекта:

­        техническое задание на расстановку рабочих мест, выданное заказчиком (приложение 1);

­        строительные планы и чертежи, выданные заказчиком.

    продолжение
--PAGE_BREAK--3.Проект СКС.


СКС устанавливается в семиэтажном здании башенного типа (см. рис.), с размерами в плане 24х30 м. Высота этажа составляет 3.5 м, общая толщина перекрытий равна 50 см. На всех этажах здания рабочие помещения имеют разные размеры.

Во всех помещениях здания (кроме помещений цокольного этажа) имеется подвесной потолок с высотой свободного пространства 35 см. Стены помещений изготовлены из обычного кирпича и покрыты штукатуркой, толщина которой составляет 1 см. Строительным проектом предусмотрен вертикальный технологический канал для прокладки кабелей, проходящий через все этажи.

В ходе проектирования мною было рассмотрено несколько вариантов архитектуры структурированной кабельной системы, и выбран вариант как оптимальный по стоимости, так и наиболее удобный с точки зрения последующего администрирования

<img width=«287» height=«443» src=«ref-1_1932187556-24671.coolpic» v:shapes="_x0000_i1039">.

Создаваемая СКС должна обеспечить функционирование ЛВС и телефонной сети здания, то есть на каждом рабочем месте монтируется информационная розетка с двумя розеточными модулями.Внутренняя сеть телефонизации и внутренняя компьютерная сеть проектируется как единое целое, как часть СКС.Подсистема рабочего места состоит из необходимого количества универсальных портов RJ-45 и соединительных кабелей для подключения оконечного оборудования.

Общее число рабочих мест, определяется из расчета 5 м2 на одно рабочее место  — итого 149 рабочих мест (311 универсальных портов RJ-45, и 3 телефонных RJ-11). В помещениях, в которых располагаются кабинеты руководства, приемные или диспетчерские число рабочих мест определялось исходя из необходимого количества портов, и оно не  всегда совпадает с расчетным, так как при расчете по площади в кабинетах руководства и приемных получается чрезмерная избыточность портов, а в диспетчерских возникает недостаточность — из-за потребности в подключении большого количества телефонов.Таблица показывает количество рабочих мест сети передачи данных на каждом этаже здания.

Этаж

Количество рабочих мест

Количество универсальных портов

Цоколь

5

7

1 -и этаж

11

21

2-й этаж

27

54

3-й этаж

5

20

4-й этаж

34

78

5-й этаж

33

66

6-й этаж

34

68

Общее кол-во рабочих мест

149




Общее кол-во универсальных портов

314


Перечень технических помещений приведен в таблице ниже.



Номер помещения

Назначение

Площадь

13 (цокольный этаж)

 а  (цокольный этаж)

13 (пятый этаж)

Щитовая

Помещение АТС

Аппаратная, кроссовая

18.63

16.23

15.01


Общее количество рабочих мест по всем этажам здания указано в Приложении 2.
Чертежи по разводке кабеля, распределению рабочих мест и оборудования СКС находятся в Приложении 3.

Расположение оборудования в коммутационном шкафу показано в Приложении 4.

Спецификация используемого оборудования и материалов находится в Приложении 5.

Подсистема управления максимально унифицирована. Главный кросс располагается на пятом этаже в помещении 13. Детальное описание СКС представлено ниже.

3.1 Подсистемы.

СКС состоит из следующих подсистем:

• Подсистема рабочего места

• Горизонтальная подсистема

• Вертикальная подсистема

• Подсистема управления

• Подсистема оборудования

• Внешняя подсистема

3.1.1 Подсистема рабочего места

Подсистема рабочего места включает в себя необходимое количество универсальных портов на базе унифицированных разъемов RJ45 и/или оптических соединителей для подключения оконечного оборудования.

Проектом предусмотрено использование следующих конфигураций рабочих мест:

­        РМ – простое рабочее место, оборудуется двумя розетками RJ-45, двумя розетками бесперебойного и двумя розетками стабилизированного электропитания;

­        РМР – рабочее место руководителя, оборудуется  четырьмя розетками RJ-45, двумя розетками бесперебойного и двумя розетками стабилизированного электропитания;

­        Т – рабочее место, оборудуется наружной телефонной розеткой с разъемом RJ-11;

­        К – рабочее место, оборудуется наружной компьютерной розеткой с разъемом RJ-45.

Количество рабочих мест взято из расчета 5 м2 площади кабинета на одно рабочее место  с учетом спецификации помещения  и задания на расстановку рабочих мест. Точка установки рабочего места в процессе эксплуатации может быть без особых затрат  передвинута вдоль короба. Для этой цели необходимо оставить у каждой розетки петлю запаса кабеля около 1м

    продолжение
--PAGE_BREAK--3.1.2 Горизонтальная подсистема
Горизонтальная подсистема обеспечивает соединение рабочих мест с кроссовым оборудованием, установленным в стандартном 19" монтажном шкафу (главный кросс). Выполнена 4-х парным кабелем  типа «неэкранированная витая пара» категории 5, со следующими характеристиками [9]:

Сопротивление             9.38 Ом/100м

Емкость                        4.59 нФ/100 м на частоте 1 кГц
В таблице представлены характеристики 4-х парного кабеля типа UTP5-ой категории по затуханию, перекрестным наводкам и импедансу.



Частота МГц

Затухание дБ/100м

NEXT, ДБ

Импеданс, Ом

0.064

-

-

125+15

0.128

-

-

115+15

0.256

-

-

110+15

0.772

1.8

64

100+15

1.0

2.0

62

100+15

4.0

4.1

53

100+15

8.0

5.8

48

100+15

10.0

6.5

47

100+15

16.0

8.2

44

100+15

20.0

9.3

42

100+15

25.0

10.4

41

100+15

31.25

11.7

40

100+15

62.5

17.0

36

100+15

100

22.0

32

100+15



Все кабельное и кроссовое оборудование, применяемое в проекте, удовлетворяет требованиям 5 категории международного стандарта EIA/TIA-568A, а также требованиям UnderwritersLaboratories(UL) США по электробезопасности и техническим характеристикам.

Требуемое количество кабеля рассчитывается с использованием следующего эмпирического метода [10]. Исходя из предположения, что рабочие места распределены по обслуживаемой площади равномерно, вычисляется средняя длина (Lcp) кабельных трасс по формуле:

Lcp =(Lmax+Lmin)/2

где Lminи Lmax– соответственно длины кабельной трассы от точки размещения кроссового оборудования до информационного разъема самого близкого и самого далекого рабочего места, посчитанные с учетом технологии прокладки кабеля, всех спусков, подъемов, поворотов и особенностей здания. При определении длины трасс необходимо добавить технологический запас величиной 10% от Lcpи запас Х для процедур разводки кабеля в распределительном узле и информационном разъеме; так что длина трасс Lсоставит:

L= (1,1Lcp+X)*Nгде N– количество розеток на этаже.
Рассчитаем количество кабеля, необходимое для каждого этажа, и просуммируем. Дробные значения округляем до целых.

Для цокольного этажа Lminи Lmaxравны соответственно  29 и 45метров.

Lcp = (29+45)/2 = 37 м.

L = (1,1*37+2)*7= 299 м.

Для первого этажа Lmin= 23 м.;  Lmax= 60 м.

Lcp = (23+60)/ 2= 42 м.

L= (1,1*42+2)*21 = 1012м.

Для второго этажа Lmin= 24 м.;  Lmax= 69 м.

Lcp = (24+69)/ 2= 47 м.

L= (1,1*47+2)*54 = 2900м.

Для третьего этажа Lmin= 11 м.;  Lmax= 21 м.

Lcp = (11+21)/ 2= 16 м.

L= (1,1*16+2)*20 = 392 м.

Для четвертого этажа Lmin= 6 м.;  Lmax= 38 м.

Lcp = (6+38)/ 2= 22 м.

L= (1,1*22+2)*68 = 1782 м.

Для пятого этажа Lmin= 6 м.;  Lmax= 30 м.

Lcp = (6+30)/ 2= 13 м.

L= (1,1*13+2)*66 = 1076м.

Для шестого этажа Lmin= 7 м.;  Lmax= 35 м.

Lcp = (7+35)/ 2= 21 м.

L= (1,1*21+2)*68 = 1707 м.

Итого для горизонтальной подсистемы необходимо:

Lобщ= 299+1012+47+2900+392+1782+1076+1707 = 9215 метров кабеля.

Известно, что в бухте 305 метров кабеля. Тогда для создания горизонтальной подсистемы необходима 31 (9215/305=30,21) бухта, или 9455 метров кабеля (31*305=9455).

Прокладка кабелей горизонтальной подсистемы на этажах за подвесным потолком  осуществляется в коробе и ПВХ- трубе:

­     вертикальный стояк – металлический короб  100х60мм;

­     горизонтальная прокладка (за подвесным потолком по стене):

-       труба П/Э ø 40 мм  –  1 шт на каждые20 кабелей UTP;

-       труба ПВХ ø25 мм  – для кабелей ВВГ

-       металлический короб 100х60мм – для соединения  вертикального стояка с аппаратной на пятом этаже;

­     спуски к рабочим местам — две трубы ПВХ ø20мм в штробе до каждого рабочего места на расстоянии не менее 15 см друг от друга.

Необходимое количество коробов и труб мною рассчитано по рабочим чертежам, и представлено в Приложении 5.

Кабеля оконечиваются встраиваемыми в короб розетками RJ-45, способными подключать также телефонные коннекторы RJ-11.  Для подключения оборудования рабочих мест СКС укомплектовывается патч-кордами  длиной 3 и 5м. Комплектование компьютеров пользователей сетевыми картами данным проектом не рассматривалось и подбирается индивидуально к каждому системному блоку.
Сети бесперебойного и стабилизированного электропитания.

Проектом предусматривается две параллельных сети электропитания:

­         бесперебойное электропитание системных блоков и мониторов компьютеров для защиты электронных устройств и информации;

­         стабилизированное электропитание различных электронных устройств, не требующих постоянного или безобрывного электропитания (типа принтеров, ксероксов, факсов), для их защиты от скачков напряжения.
Обе сети разбиты симметрично на группы, в основном по две на этаж, для бесперебойной работы других пользователей при отключении одной группы. Для предотвращения несанкционированного доступа включение или отключение каждой группы предусмотрено из помещения аппаратной (п.13 5 этажа) от основного щита бесперебойного и   стабилизированного электропитания, снабженного автоматическими выключателями и устройством защитного отключения.

Разводка осуществляется силовым кабелем ВВГ следующих сечений:

­         ВВГ 4х25 – для подключения  блоков бесперебойного и стабилизированного питания к вводному электрическому щиту и для подключения к этим блокам основного щита бесперебойного и   стабилизированного электропитания;

­         ВВГ 3х2,5 – для подключения групп пользователей от основного щита бесперебойного и   стабилизированного электропитания до первого рабочего места в группе;

­         ВВГ 3х1,5 – для подключения пользователей внутри группы.

Расчет необходимого количества кабеля был произведен аналогично расчету кабеля горизонтальной подсистемы.

Прокладка кабеля ВВГ осуществляется в отдельном коробе.
3.1.3 Вертикальная подсистема.

Вертикальная подсистема позволяет объединять в унифицированную сеть несколько этажей здания. Допускает применение медных витых пар и волоконно-оптического кабеля. Обеспечивает соединение устройств связи и коммутации компьютерной сети.

В данном проекте вертикальная подсистема сведена к минимуму.  Состоит из одного оптического патч-корда SX, соединяющего два коммутатора (НР  ProCurve Switch 4000M  J4121A) через порт Gigabit-SX .

3.1.4 Подсистема управления.

Включает в себя кроссовое оборудование для коммутации сигналов, передаваемых как по медному, так и оптическому кабелю. Подсистема управления включает в себя кроссовое оборудование для коммутации сигналов в главном кроссе.

Коммутация рабочих мест осуществляется при помощи специальных кросс-кабелей между этими панелями на главном кроссе (5 этаж ком. 13). Применение такой схемы обеспечивает более безопасный метод коммутации активного оборудования.

В помещении аппаратной  (п.13 5 этажа) устанавливается 19” шкаф, в который вмещается:

­         14 патч-панелей на 25 портов RJ-45 для расключения внутренней (абонентской) сети;

­        4 патч-панели на 25  портов  RJ-45 для расключения кабелей идущих из кросса АТС;

­        два коммутатора НР  ProCurve Switch 4000M  J4121A на 56 портов 10/100 RJ-45;

­        11 горизонтальных  кабельных органайзеров высотой 1U;

­        2 вертикальных кабельных органайзера;

Для коммутации шкаф укомплектовывается патч-кордами длиной 0,5, 1 и 1,5м.

3.1.5 Подсистема оборудования.

Включает в себя любое активное оборудование систем передачи голоса, данных, видео, контроля за безопасностью, систем пожарной сигнализации и контроля за климатом и отоплением.В качестве устройства связи и коммутации компьютерной сети проектом взято два полнофункциональных модульных коммутатора НР procurve switch 4000m, содержащими каждый по:

­     48 предустановленных портов 10/100 с автосогласованием, поддерживающих любую комбинацию соединений 10 Мбит/с и 100 Мбит/с без дополнительной настройки;

­     1 портом Gigabit-SX;

­     три свободных универсальных слота, допускающих любую комбинацию модулей:

-       модуль с 8 портами 10/100Base-T,

-       модуль с 1 портом Gigabit-SX,

-       модуль с 4 портами 100Base-FX,

-       модуль с 4 портами 10Base-FL;

Кроме того коммутаторы поддерживают следующие функции:

­     расширенный мониторинг RMON (4 группы) и RMON (HP Ease);

­      организация «зеркальных» портов позволяет контролировать любую комбинацию портов с помощью одного зонда RMON;

­     разделение рабочих групп с помощью брандмауэра IEEE 802.1Q VLAN;

­     ПО IGMP устраняет нежелательную лавинную маршрутизацию видеотрафика и  поддерживает CoS для разнородного IP-трафика.

Для связи коммутаторы укомплектовываются оптическим патч-кордом SXдлиной 0,5м.
Сервер локальной компьютерной сети

Проектом предусмотрен сервер HP NetServer LH 6000r D9114AV с одним процессором Pentium® III Xeon 550 МГц /2 Мб. Выбор сервера обусловлен повышенной производительностью системы ввода-вывода, полным набором средств поддержания работоспособности и улучшенными возможностями расширения для наиболее полного удовлетворения всех требований  быстро развивающихся корпоративных вычислительных центров. Данный сервер содержит:

­     256 МБ памяти PC-133 SDRAM;

­     интегрированный двухканальный контроллер HP NetRAID с 32 Мб кэш-памяти;

­     интегрированный интерфейс ЛВС 10/100TX;

­     блоки питания горячей замены и вентиляторы;

­     встроенные средства дистанционного управления HP Remote Assistant;

­     ПО HP TopTools for Servers;

­     ПО HP OpenView ManageX Event Manager;

­     привод CD-ROM и дисковод.

Кроме этого как опция (в спецификацию проекта не входит) оборудование сервера может быть расширено:

­     до шести процессоров Intel® Pentium® III Xeon™;

­     до 8ГБ памяти PC-133 ECC SDRAM;

­     до 12 жестких дисков горячей замены Ultra2 или Ultra3 SCSI суммарной емкостью до 216 ГБ;

­     другое оборудование, устанавливаемое в восемь 64-разрядныхслотов PCI (слота 66 МГц) и три равноправные шины PCI.

Сервер располагается в помещении аппаратной (п.13 5 этажа) в 19 “ шкафу с запираемой дверью и встроенной охранной и пожарной сигнализацией.
Источник бесперебойного электропитания ИБП


В качестве источника в системе  бесперебойного питания проектом предусматривается использование ИБП Summetra16kVAMasterFrameSY16KI, работающего  по топологии «On-Line», двойное преобразование. ИБП  отвечает требованиям ГОСТ 27699-88 и ГОСТ Р 50745-95, а производство сертифицировано по стандарту ISO 9001.

Основными задачами ИБП в системе бесперебойного питания являются:

­     при нарушениях в работе электрической сети, обеспечение электроснабжения ответственных потребителей (информационно-вычислительное, телекоммуникационное и сетевое оборудование) на время, достаточное для корректного ручного или автоматического свертывания работы локальной сети;

­     возможность контроля и управления со стороны сетевого администратора   

­     повышение качества электрической энергии, получаемой от питающей сети и поступающей к ответственным потребителям;

­     создание дополнительной развязки электрическая сеть — ответственный потребитель для решения вопросов электрической безопасности.

Для увеличения времени работы от ИБП при пропадании основного электропитания проектом предусматривается дополнительный батарейный корпус SummetraSYXR12B12I (с 12 блоками батарей SYBATT). Расчетное время работы:

­     при полной нагрузке 12-18 мин;

­     при средней проектируемой 30-60 мин.

ИБП  располагается в помещении щитовой 13.
Источник стабилизированного электропитания ИСП


В качестве источника в системе  стабилизированного питания проектом предусматривается использование однофазного стабилизатора переменного напряжения «Штиль» R1600М, работающего  по топологии «On-Line».

ИСП производит стабилизацию входного напряжения в пределах 220÷3В при входных напряжениях 160…265В. Кроме этого в ИСП включен компьютерный интерфейс для контроля и управления со стороны сетевого администратора. ИСП  располагается в помещении щитовой 13.


    продолжение
--PAGE_BREAK--Система контроля микроклимата
  Для поддержания технических условий эксплуатации оборудования связи в помещении аппаратной (п.13 5 этажа) устанавливается кондиционер типа PANASONIC CS-A18ВKР new, мощностью  охлаждения  5.3кВт и  мощностью обогрева 5.7кВт. Кондиционер представляет собой сплит-систему с одним наружным блоком и одним внутренним. При эксплуатации кондиционера необходимо блокировать  отверстие  вентиляции здания (использовать их как аварийные).

3.1.6 Внешняя подсистема.

Предназначена для формирования объединенной сети в группе зданий. Может базироваться на медном или оптическом кабеле или их комбинации.  Находится на стадии разработки. Для построения магистрали, связывающей ЛВС нового административного здания ГПУ с оборудованием РСПД (старое здание) планируется использовать  RadioEthernet. Как альтернатива рассматривается техническая и экономическая возможность прокладки между зданиями оптоволоконного кабеля. В рамках данной работы внешняя подсистема не рассматривается.
3.2    Топология СКС.

Традиционная архитектура иерархической звезды разработана для обеспечения максимальной гибкости. Кроссовое оборудование устанавливается в главной аппаратной.

<img width=«287» height=«352» src=«ref-1_1932212227-16011.coolpic» v:shapes="_x0000_i1040">

3.3   Управление СКС.

Архитектура одноточечного управления разработана для максимальной простоты управления. Обеспечивая прямое соединение всех рабочих мест с кроссом в главной аппаратной, она позволяет управлять системой из одной точки, оптимальной для расположения централизованного активного оборудования. Администрирование в однойточке обеспечивает простейшее управление цепями, возможное, благодаря исключению необходимости кроссировки цепей во многих местах. Администрирование из одной точки также обеспечивает возможность подключения пользователей, находящихся в разных частях здания, непосредственно к одному и тому же сегменту сети. Это упрощает управление локальной сетью и снижает трафик на постоянно перегруженных мостах и маршрутизаторах.

Одноточечное администрирование приводит кроме того к снижению денежных затрат по трем причинам. Во-первых, оно исключает необходимость в горизонтальном кроссе, позволяя сэкономить на пассивном оборудовании. Во-вторых, оно позволяет собирать активное оборудование в одном месте, уменьшая количество неиспользуемых портов в системе: таким образом снижается стоимость активного оборудования. В-третьих, эта архитектура упрощает эксплуатацию сети, уменьшая нагрузку на обслуживающий персонал.

3.4     Прокладка абонентских линий.

Трассу прокладки абонентских линий можно подразделить на следующие участки:

·        от межэтажного перехода на каждом этаже до места ввода кабелей в рабочие комнаты;

·        от места ввода кабеля в комнатах до каждого рабочего места.

Для прокладки кабелей системы СПД и телефонии по коридорам от межэтажных переходов до этажных коммутационных узлов, от коммутационных узлов до ввода кабелей в рабочие комнаты используется требуемое количество (указано в приложении)трубы п/э. Силовые кабели от щитов до места ввода в рабочие помещения прокладываются в отдельных трубах ПВХ.

Прокладка информационных и силовых кабелей в рабочих помещениях осуществляется в разных кабель-каналах.

 

Способы прокладки.


Кабель-каналы прокладываются по стенам здания путем крепления их шурупами с шагом 1 метр. По периметру рабочих помещений кабель-каналы устанавливаются на высоте 75-80 см. от пола, чуть выше уровня рабочих столов. По вешним стенам здания вдоль окон, кабель-каналы устанавливаются под подоконниками. Для стыковки каналов проложенных вдоль окон и по внутренним стенам рабочих помещений, используются угловые секции кабель-каналов.



3.5    Требования по монтажу кабельной системы.

Монтаж кабельной системы должен производиться в соответствии с требованиями стандартов EIA/TIA-569, Е1АЯ1А-Т8В40, EIA/TIA-RS-455 и выполняться в несколько этапов [11]:

— сверление проходных отверстий;

— монтаж кабельных коробов;

-  монтаж настенных шкафов и коммутационного оборудования;

— прокладка кабеля;

— установка и разделка розеток;

— разделка кабелей на коммутационных панелях;

— маркировка.
3.5.1    Сверление проходных отверстий.

Диаметр проходных отверстий должен быть таким, чтобы кабели занимали не более 50% площади отверстий. В каждое отверстие устанавливается закладная труба соответствующего диаметра.
3.5.2    Прокладка кабеля.

При прокладке кабеля должны быть выполнены следующие общие требования [11]:

·        избегать повреждения внешней оболочки кабеля;

·        избегать перекручивания кабеля;

·        затяжки (хомуты) должны затягиваться вручную без использования инструмента;

·        тянущее усилие прилагать равномерно, без рывков;

·        выдерживать радиус изгиба кабеля не менее 8 диаметров кабеля;

·        расстояние  между  поддерживающими  кабель  элементами  не должно превышать 1.5м;

·        пролеты кабеля между поддерживающими элементами должны иметь видимый провис, что является показателем приемлемого натяжения кабеля;

·        расстояние до источников дневного света должно быть не менее 120 мм. Если данное требование выполнить невозможно, необходимо использовать металлический трубопровод.

3.6 Система маркировки элементов кабельной системы [9].

Система маркировки кабельной системы разработана в соответствии со стандартом EIA/TIA606, на основе руководства AT&TSYSTIMAXSCSAdministrationmanualи материалов курсов ND3321 AT&TSYSTIMAXSCSdesign& Engineering.

Каждый элемент кабельной системы имеет уникальный номер, который состоит из префикса, обозначающего элемент кабельной системы; поля, определяющего местоположение элемента и букв, определяющих систему, к которой относится данный элемент кабельной системы.

3.6.1 Идентификатор кабеля.

Каждый кабель имеет нанесенный с двух сторон уникальный идентификатор, который содержит следующую информацию:

Тип кабеля ( С — 4-х парный кабель UTP; СВ — Магистральный 25-и парный UTPкабель вертикальной проводки), нумерация сквозная.
3.6.2 Идентификатор информационного выхода.

Каждая розетка имеет уникальный идентификатор, который содержит следующую информацию:

·        Буква J(Jack);

·        Трехзначный  номер,  включающий  №  этажа  (первая  цифра),  двузначный  номер комнаты в которой находится информационный выход;

·        № рабочего места вкомнате;

·        № розетки на рабочем месте в комнате;

·        Буква, определяющая систему, которую обслуживает кабель D(Data) – сеть передачи данных; V( Voice) – телефон. Эта буква вносится в карту учета кабелей горизонтальной подсистемы только после того, как будет определена принадлежность порта к определенной системе.

Примеры обозначения розеток приведены в таблице ниже

J401-1-1

Розетка: этаж 4, ком. 01, рабочее место 1, розетка № 1

3.6.3 Идентификатор гнезда кросс-панели коммутационного шкафа.

Каждое гнездо кросс-панели коммутационного шкафа для окончаний кабеля типа «витая пара» имеет идентификатор, который содержит:

·        Буквы МС (MainCross-Connect) для главного кросса, 1C (IntermediateCross-connect) для этажных промежуточных кроссов;

·        № комнаты, где расположен главный коммутационный узел;

·        Двузначное   число   после   номера   комнаты — номер  100-парного   модуля   в коммутационном блоке;

·        Буква определяет 900-парный модуль в главном кроссе;

·        Однозначная цифра после буквы определяет номер в линейке 100-парного модуля;

·        Однозначная цифра после тире — номер порта активного оборудования;

·        Двузначная цифра после тире — номер пары подключенного 25-и парного кабеля.

Примеры обозначения гнезд кросс-панелей для главного кросса (МС) и промежуточных этажных (1C) приведены в таблице.



МС.513.01С1-1



Гнездо кросс-панели для подключения активного оборудования расположено в главном кроссе комната 513, место панели в шкафу — 01, столбец С, № ряда в столбце — 1, № порта панели 1



МС.513.09В1-01



Гнездо кросс-панели для  подключения 25-парного телефонного кабеля расположено в главном кроссе комната 513, место панели в шкафу — 09, столбец В, № ряда в столбце — 1, № пары в панели 01.



МС.513.08В1-01



Гнездо        кросс-панели     вертикальной        подсистемы расположено в главном кроссе комната 513, место панели в шкафу -08, столбец В, № ряда в столбце — 1, № пары на коммутационной панели — 01



IC.102.01A1-1



Гнездо этажной кросс-панели для глухой кроссировки   25-парного магистрального  кабеля  с  4-х  парным   кабелем   горизонтальной проводки расположено в этажном кроссе помещения 02 на первом этаже, место панели в шкафу — 01, столбец  А, № ряда в столбце — 1, № порта 1.




3.6.4 Карточка учета кабеля.


Карточки учета кабелей составляются на основе стандарта TIA/EIA606 "TheAdministrationStandardfortheTelecommunicationsInfrastructureofCommercialBuilding", заполняются при инсталляции и дополняются в процессе всего срока эксплуатации кабельной системы.

Карточка составляется для каждого кабеля и содержит идентификатор кабеля, тип кабеля, неподключенные, поврежденные и свободные пары/ жилы кабеля. Дополнительно в карточку заносится информация об общей длине кабеля, выполненных муфтах, трассах прокладки, заземлению. В карточке выполняются записи по каждой паре/жиле в кабеле.

В поле «Тип кабеля» должен быть указан производитель и маркировка производителя. Месяц и год монтажа или сдачи в эксплуатацию могут быть записаны в разделе дополнительной информации.

Поле «Подключение концов кабеля» используется для указания конечной позиции конца каждой пары/жилы или набора пар/жил кабеля. Каждые пара/жила или набор пар/ жил имеют запись по обеим конечным позициям.

В таблице ниже приведена карточка учета медных 4-парных кабелей типа «витая пара» 5-ой категории горизонтальной подсистемы. Пустые строки карточки заполняются по окончании прокладки и монтажа каждого кабеля. Все изменения в карточку вносятся в процессе эксплуатации кабеля на протяжении всего срока службы.

                                                        Пояснения


Идентификатор кабели

C137

Медный кабель горизонтальнои под системы С0011


Тип кабеля

4 пары, UTP, EIA—568

Физические характеристики, код и т.д.


Неподключенные пары/ жилы





Лист неподключенных пар/ жил


Поврежденные пары/ жилы



Лист поврежденных пар/ жил


Свободные пары/ жилы



Лист свободных пар/жил


Подключения концов кабеля




Конец 1

Конец 2


Пары 1-4

J 401-1-1

IC6 402/01A1-1

Все 4 пары заканчиваются в этих двух позициях


Сращивание

Нет

Обозначение сращивания кабеля


Номер пути прокладки



Обозначение канала, в котором про ложен кабель


Заземление

Нет

Обозначение жил подключенных к заземляющему контуру


Дополнительная информация


Длина кабеля




Владелец




Дата сдачи в эксплуатацию




Другие подключения



Сноска на другие карточки


3.7 Рекомендации   по   администрированию   локальной   компьютерной   и телефонной сетей в рамках структурированной кабельной системы.


Структурированная кабельная система, являющаяся единой транспортной средой для различных систем и объединяющая в себе ранее разрозненные сети, требует изменения существующих ранее принципов организации эксплуатации и технического обслуживания локальных, телефонных и прочих сетей.

Разработанный проект охватывает не только общую кабельную систему, но и интегрированную локальную и телефонную сеть, которую можно подразделить на следующие подсистемы:

·              кабельное хозяйство (структурированная кабельная система, система бесперебойного электроснабжения, система заземления);

·              главное активное оборудование (центральные коммутаторы, коммутаторы и концентраторы рабочих групп, учрежденческая АТС, маршрутизаторы);

·              основное вычислительное оборудование (серверы с дополнительным оборудованием, подключенным к ним);

·              периферийное активное оборудование (персональные компьютеры, телефонные аппараты и др.).

Основной задачей обслуживающего и ремонтно-технического персонала является устранение возникающих неисправностей в различных подсистемах. Эти функции обычно совмещались с другими обязанностями администратора, что приводило к сложности выполнения ремонтных работ в случае аврала.

В случае инсталляции структурированной кабельной системы высокое качество всех компонентов, тестирование всей кабельной системы на соответствие 5-ой категории после проведения инсталляции сводят к минимуму вероятность возникновения аварии в кабельном хозяйстве. Основные задачи администратора сводятся к выполнению переключений в узлах коммутации и их точному документированию.

Однако работы по проведению текущих переключений и тем более переключений в аварийных ситуациях должны выполняться в строгом согласовании cдругими администраторами информационной системы. Поэтому для успешной эксплуатации интегрированной информационной системы, включающей локальные, телефонную сети, а также другие низкоточные и выделенную силовую сети, необходимо создание единой выделенной службы администрирования, включающей в себя:

·        администратора кабельной системы;

·        сетевого администратора;

·        системного администратора;

·        администратора телефонной подсистемы;

·        группу поддержки конечных пользователей;

·        администратора баз данных и прикладных задач.
Основные задачи администратора кабельной системы следующие:

·        проведение текущих коммутаций интегрированной локальной и телефоннойсети;

·        поддержание технической документации на структурированную кабельную систему в аккуратном состоянии;

·        проведение коммутаций в аварийных ситуациях в строгом соответствии с ранее разработанными инструкциями;

·        эксплуатация выделенной сети электропитания потребителями особой группы первой категории;

·        текущее обслуживание узлов коммутации, оборудования выделенной сети электропитания потребителей особой группы первой категории.
Основные задачи администратора телефонной подсистемы:

·        программирование УАТС;

·         администрирование УАТС;

·        текущее обслуживание УАТС. Основные задачи сетевого администратора:

·        администрирование и программирование активного сетевого оборудования;

·        контроль за состоянием активного сетевого оборудования и каналов передачиданных СПД;

·        текущее обслуживание;

·        восстановление и переконфигурация сети передачи данных после аварии. Основные задачи системного администратора:

·        администрирование основного сетевого оборудования;

·        конфигурирование операционной системы и ведение бюджета пользователей;

·        восстановление      и      переконфигурация      основного      вычислительного оборудования после аварии.
Основные задачи группы поддержки конечных пользователей следующие:

·        инсталляция и настройка периферийного активного оборудования;

·        текущее обслуживание периферийного оборудования;

·        определение   и   устранение   неисправностей   активного    периферийного оборудования;

·        постройка и сопровождение пользовательских операционных систем.
Основные задачи администратора баз данных и прикладных задач следующие:

·        обеспечение работы баз данных и прикладных программ;

·        управление базами данных;

·        внедрение прикладных задач.
Подрядная организация должна выполнять следующие виды работ:

·        гарантийный и послегарантийный ремонт оборудования;

·        техническая поддержка;

·        модернизация и развитие всех подсистем интегрированной информационной системы;

·        консультации и обучение технических специалистов и конечных пользователей.
Администрирование структурированной кабельной системы.


В    понятие    «администрирование    структурированной    кабельной    системы» включаются следующие виды работ:

·        внесение изменений в пассивную часть кабельной системы с установкой кроссовых шнуров в коммутационных узлах;

·        установка и подключение активного сетевого оборудования в коммутационных шкафах;

·        установка и подключение перефирийного оборудования на рабочем месте пользователя;

·        заполнение документации на внесенные изменения.
Техническая документация на структурированную кабельную систему должна быть отпечатана в трех экземплярах и храниться в следующих местах:

·        полный экземпляр в архиве Газопромыслового управления;

·        полный экземпляр на рабочем месте администратора кабельной системы;

·        рабочие таблицы на месте выполнения работ в главном коммутационном узле.

В процессе эксплуатации должны вноситься изменения во всех трех экземплярах причем рабочие таблицы заполняются непосредственно в процессе выполнения работ, а полные экземпляры изменяются после окончания работ. Все записи выполняются аккуратно и разборчиво и должны отражать текущее состояние коммутационных узлов.

Работы, связанные с изменением трасс прокладки, обнаружением неисправностей и ремонтом кабельного хозяйства и коммутационных элементов, тестированием, измерением и оформлением протоколов измерений, должны выполняться сертифицированными специалистами подрядной сервисной организации.
    продолжение
--PAGE_BREAK--
еще рефераты
Еще работы по информатике