Контрольная работа: Локально-вычислительные сети

Локальные вычислительные сети (ЛВС) получили наибольшее распространение с появлением персональных компьютеров. Они позволили поднять на новую ступень управление производственными объектами, повысить эффективность использования ресурсов ЭВМ, улучшить качество обрабатываемой информации, начать внедрение безбумажной технологии, создать новые технологии распределенной обработки информации. Объединение ЛВС и глобальных сетей позволило получить доступ к мировым информационным ресурсам.

Локальные сети ориентированы на объединение вычислительных машин и периферийных устройств, сосредоточенных на небольшом пространстве (например, в пределах одного помещения, здания, группы зданий в пределах нескольких километров).

Преимущества локальной сети:

— использование в многопользовательском режиме общих ресурсов сети (дисков, модемов, принтеров, программ и данных);

— возможность передачи информации с одного компьютера на другой;

— сравнительно низкая стоимость;

— высокая живучесть и простота комплексирования;

— оснащенность современными операционными системами различного назначения;

— высокая скорость передачи данных.

Основными аппаратными компонентами ЛВС являются:

•рабочие станции

•серверы

•интерфейсные платы

•кабели

Рабочие станции — это, как правило, персональные ЭВМ, которые являются рабочими местами пользователей сети.

Серверы ЛВС выполняют функции распределения сетевых ресурсов. Обычно его функции возлагают на достаточно мощный ПК, мини ЭВМ, большую ЭВМ или специальную ЭВМ — сервер. В одной сети может быть один или несколько серверов.

В серверных ЛВС реализованы две модели взаимодействия пользователей с рабочими станциями (РС): модель «файл – сервер» и модель «клиент – сервер».

В первой модели сервер обеспечивает доступ к файлам базы данных для каждой рабочей станции, и на этом его работа заканчивается. Например, если используется база данных типа «файл – сервер» для получения сведений о налогоплательщиках, проживающих на какой — либо конкретной улице, по сети будет передана вся таблица по городу, и решать, какие записи в ней удовлетворяют запросу, а какие нет, приходится самой рабочей станции.

В модели “клиент — сервер” прикладная система делится на две части: внешнюю, обращенную к пользователю и называемую клиентом, и внутреннюю, обслуживающую и называемую сервером. Сервером является машина, обладающая ресурсами и предоставляющая их, а клиентом — потенциальный потребитель этих ресурсов. Роль ресурсов может играть файловая система (файловый сервер), процессор (вычислительный сервер), база данных (сервер БД), принтер (принтер — сервер) и др. Так как сервер (или серверы) обслуживает одновременно многих клиентов, то на серверном компьютере должна функционировать многозадачная операционная система.

В модели “клиент — сервер” сервер играет активную роль, ибо его программное обеспечение заставляет сервер “сначала подумать, а потом сделать”. Потоки информации, текущие по сети, становятся меньшими, поскольку сервер сначала обрабатывает запросы, а затем посылает клиенту то, в чем он нуждается. Сервер также контролирует допустимость обращения к записям на индивидуальной основе, что обеспечивает большую безопасность данных. В модели “клиент — сервер”, созданной на основе ПЭВМ, предлагается следующее:

— сеть содержит значительное количество серверов и клиентов;

— основу вычислительной системы составляют рабочие станции, каждая из которых функционирует как клиент и запрашивает информацию, которая находится на сервере;

— пользователь системы освобожден от необходимости знать, где находится требуемая ему информация, он просто запрашивает то, что ему нужно;

— система реализуется в виде открытой архитектуры, объединяющей ЭВМ различных классов и типов с различными системами.

Важнейшими параметрами, которые должны учитываться при выборе компьютера — сервера, являются: тип процессора, объем оперативной памяти, тип и объем жесткого диска и тип дискового контроллера. Значения указанных параметров зависят от решаемых задач, организации вычислений в сети, загрузки сети, используемой ОС и других факторов.

Рабочие станции и серверы в сети соединяются друг с другом посредством линий передачи данных, в роли которых выступают кабели. Подключение компьютеров к кабелю осуществляется с помощью интерфейсных плат — сетевых адаптеров. В проводных сетях в качестве физической связи в каналах используются:

— плоский двухжильный кабель,

— витая пара проводов,

— коаксиальный кабель,

— световод (оптово-волоконный кабель).

В большинстве сетей применяются три основные группы кабелей:

• коаксиальный кабель;

• витая пара (twisted pair), неэкранированная (unshielded) и эк­ранированная (shielded);

• оптоволоконный кабель.

Коаксиальный кабель до недавнего времени был самым распро­страненным. Недорогой, легкий, гибкий, удобный, безопасный и простой в установке.

Существует два типа коаксиальных кабелей: тонкий (специфи­кация 10Base2) и толстый (спецификация 10Base5). Тонкий — гибкий, диаметр 0,64 см (0,25). Прост в применении и подходит практически для любого типа сети. Подключается непо­средственно к плате сетевого адаптера. Передает сигнал на 185 м практически без затухания. Волновое сопротивление — 50 ом. Толстый — жесткий, диаметр 1,27 см (0,5). Его иногда называ­ют стандартный Ethernet (первый кабель в популярной сетевой ар­хитектуре). Жила толще, затухание меньше. Передает сигнал без за­тухания на 500 м. Используют в качестве магистрали, соединяющей несколько небольших сетей. Волновое сопротивление — 75 ом.

Для подключения к толстому коаксиальному кабелю применя­ется специальное устройство — трансивер (transceiver — приемопере­датчик). Он снабжен коннектором, который называется вампир или пронзающий ответвитель. К сетевой плате трансивер подключается с помощью кабеля с разъемом. Для подключения тонкого коаксиаль­ного кабеля используются BNC-коннекторы (British Naval Connector). Применяются BNC—Т-коннекторы для соединения сетевого кабеля с сетевой платой компьютера, BNC—баррел-коннекторы для сращи­вания двух отрезков кабеля, BNC-терминаторы для поглощения сиг­налов на обоих концах кабеля в сетях с топологией шина.

Витая пара — это два перевитых изолированных медных прово­да. Несколько витых пар проводов часто помещают в одну защит­ную оболочку. Переплетение проводов позволяет избавиться от элек­трических помех, наводимых соседними проводами и другими внешними источниками, например двигателями, трансформаторами, мощными реле.

Неэкранированная витая пара (UTP) широко используется в ЛВС, максимальная длина 100 м. UTP определена особым стандартом, в котором указаны нормативные характеристики кабелей для различ­ных применений, что гарантирует единообразие продукции.

Экранированная витая пара (STP) помещена в медную оплетку. Кроме того, пары проводов обмотаны фольгой. Поэтому STP мень­ше подвержены влиянию электрических помех и может передавать сигналы с более высокой скоростью и на большие расстояния.

Преимущества витой пары — дешевизна, простота при подклю­чении. Недостатки — нельзя использовать при передаче данных на большие расстояния с высокой скоростью.

В оптоволоконном кабеле цифровые данные распространяются по оптическим волокнам в виде модулированных световых импульсов. Это надежный способ передачи, так как электрические сигналы при этом не передаются. Следовательно, оптоволоконный кабель нельзя вскрыть и перехватить данные.

Оптоволоконные линии предназначены для перемещения боль­ших объемов данных на очень высоких скоростях, так как сигнал в них практически не затухает и не искажается. Оптоволокно переда­ет сигналы только в одном направлении, поэтому кабель состоит из двух волокон с отдельными коннекторами: одно — для передачи, дру­гое — для приема.

Скорость передачи данных в настоящее время составляет от 100 Мбит/с. Между тем, получает все большее распространение ско­рость 1 Гбит/с, теоретически — до 200 Гбит/с. Расстояние — многие километры. Кабель не подвержен электрическим помехам. Суще­ственным недостатком этой технологии является дороговизна и слож­ность в установке и подключении.

Типичная оптическая сеть состоит из лазерного передатчика света, мультиплексора/демультиплексора для объединения оптических сигналов с разными длинами волн, усилителей оптических сигналов, демультиплексоров и приемников, преобразующих оптический сиг­нал обратно в электрический. Все эти компоненты обычно собира­ются вручную.

Для передачи по кабелю кодированных сигналов используют две технологии — немодулированную и модулированную передачу.

Немодулированные системы передают данные в виде цифровых сигналов, которые представляют собой дискретные электрические или световые импульсы. При таком способе цифровой сигнал ис­пользует всю полосу пропускания кабеля (полоса пропускания — раз­ница между максимальной и минимальной частотой, которую мож­но передать по кабелю). Устройство в сетях с немодулированной передачей посылает данные в обоих направлениях. Для того, чтобы избежать затухания и искажения сигнала в немодулированных сис­темах, используют репитеры, которые усиливают и ретранслируют сигнал.

Модулированные системы передают данные в виде аналогового сигнала (электрического или светового), занимающего некоторую полосу частот. Если полосы пропускания достаточно, то один кабель может одновременно использовать несколько систем (например, транслировать передачи кабельного телевидения и передавать дан­ные). Каждой передающей системе выделяется часть полосы пропус­кания. Для восстановления сигнала в модулированных системах ис­пользуют усилители. В модулированной системе устройства имеют раздельные тракты для приема и передачи сигнала, так как передача идет в одном направлении. Чтобы устройства могли и передавать, и принимать данные, используют разбиение полосы пропускания на два канала, которые работают с разными частотами для передачи и приема, или прокладку двух кабелей — для передачи и приема.

В последнее время стали появляться беспроводные сети, где используются частотные каналы передачи данных (средой является эфир). Основное преимущество беспроводных технологий — это возможности, предоставляемые пользователям портативных компьютеров. Однако скорость передачи в беспроводных технологиях не может пока сравниваться с пропускной способностью кабеля.

Словосочетание беспроводная среда не означает полное отсутствие проводов в сети. Обычно беспроводные компоненты взаимодейству­ют с сетью, в которой в качестве среды передачи используется ка­бель. Такие сети называют гибридными.

Беспроводная среда обеспечивает временное подключение к существующей кабельной сети, гарантирует определенный уровень мобильности и снижает ограничения на протяженность сети. При­меняется в служебных помещениях, где у сотрудников нет постоян­ного рабочего места, в изолированных помещениях и зданиях, в стро­ениях, где прокладка кабелей запрещена.

Существуют следующие типы беспроводных сетей: ЛВС, расши­ренные ЛВС и мобильные сети (переносные компьютеры). Основные различия между ними — параметры передачи. ЛВС и расширенные ЛВС используют передатчики и приемники той организации, в ко­торой функционирует сеть. Для переносных компьютеров средой передачи служат общедоступные сети (например, телефонная или Internet).

ЛВС выглядит и функционирует практически так же, как и ка­бельная, за исключением среды передачи. Беспроводный сетевой адаптер с трансивером установлен в каждом компьютере, и пользо­ватели работают так, будто их компьютеры соединены кабелем. Трансивер или точка доступа обеспечивает обмен сигналами между компьютерами с беспроводным подключением и кабельной сетью. Используются небольшие настенные трансиверы, которые устанав­ливают радиоконтакт с переносными устройствами.

Работа беспроводных ЛВС основана на четырех способах пере­дачи данных: инфракрасном излучении, лазере, радиопередаче в уз­ком диапазоне (одночастотной передаче), радиопередаче в рассеян­ном спектре.

По методам доступа в ЛВС выделяются такие наиболее распространенные сети, как Ethernet, ARCnet, Token Ring.

Метод доступ Ethernet, пользующийся наибольшей популярностью, обеспечивает высокую скорость передачи данных и надежность. Для него используется топология “общая шина”, поэтому сообщение, отправляемое одной рабочей станцией, принимается одновременно всеми остальными станциями, подключенными к общей шине. Но поскольку сообщение включает адреса станций отправителя и адресата, то другие станции это сообщение игнорируют. Это метод множественного доступа. При нем перед началом передачи рабочая станция определяет, свободен канал или занят. Если свободен, то станция начинает передачу.

Метод доступа ARCnet получил распространение в силу дешевизны оборудования. Он используется в ЛВС со звездообразной топологией. Одна из ПЭВМ создает специальный маркер (сообщение специального вида), который последовательно передается от одной ПЭВМ к другой. Если станция передает сообщение другому компьютеру, она должна дождаться маркера и добавить к нему сообщение, дополненное адресами отправителя и назначения. Когда пакет дойдет до станции назначения, сообщение будет отделено от маркера и передано станции.

Метод доступа Token Ring рассчитан на кольцевую топологию и также использует маркер, передаваемый от одной станции к другой. Но при нем имеется возможность назначать разные приоритеты разным рабочим станциям. При этом методе маркер перемещается по кольцу, давая последовательно расположенным на нем компьютерам право на передачу. Если компьютер получает пустой маркер, он может заполнить его сообщение кадром любой длины, однако лишь в течение того промежутка времени, который отводит специальный таймер для нахождения маркера в одной точке сети. Кадр перемещается по сети и каждая ПЭВМ регенерирует его, но только принимающая ПЭВМ копирует этот кадр в свою память и отмечает его как принятый, однако не выводит сам кадр из кольца. Эту функцию выполняет передающий компьютер, когда его сообщение возвращается к нему обратно. Тем самым подтверждается факт передачи сообщения.

 

еще рефераты
Еще работы по информатике